VideoCaptureNET Architecture overview

Using the library

Obtaining a capture device
The VideoCaptureDevice Type contains static methods that let you either obtain an enumeration describing all the available video capture devices, or simply obtain an instance of VideoCaptureDevice containing the system’s default device. Use either of these two techniques to Instantiate a VideoCaptureDevice.

Working with a capture device

Use the Properties property of the VideoCaptureDevice to get or set different features of the video source, such as the brightness and contrast.

The Enabled property gets or sets whether the capture device is rendering video.

To obtain frame data when the capture device is enabled, handle the FrameCaptured event. The VideoCaptureFrameEventArgs contains the bytes returned from the capture device for each frame. These can be obtained as a managed Byte[] array, or as a System.Drawing.Bitmap using the GetBitmap() method of VideoCaptureFrameEventArgs.

Releasing a capture device

To release the camera and its resources, call Dispose() on the VideoCaptureDevice instance.

About the architecture

Inside the VideoCaptureDevice class is an instance of an unmanaged class called UnmanagedVideoResources that handles creating, working with, and eventually disposing of the DirectShow graph.

The DirectShow callback is set to the BufferCB method in a class called CSampleGrabberCB, which contains a gcroot<VideoCaptureDevice *> which it uses call the OnSample method of the VideoCaptureDevice. (See the Managed C++ docs for more in gcroot, which allows the unmanaged class instance to effectively contain a ref to the managed class instance). The OnSample method, in turn, raises the FrameCapturedEvent.

The VideoCaptureDeviceEventArgs class does not give managed code outside of the library the opportunity to manipulate the bytes returned by the DirectShow callback. The bytes are copied to a managed array of bytes in the VCDEventArgs constructor. Any memory leaks are therefore the fault of this implementation and not the consumer.
Useful stuff about DirectShow
The DirectShow help file contains useful information about Video Capture Tasks under the topic with that title.

If you ever wanted to finish the implementation of ShowConfigDialog() then the AmCap sample might be helpful.

Useful Lessons about Managed C++

Dependency issue with msvcrt71.dll

Msvcrt71.dll was a dependency of my mixed-mode (hybrid managed/unmanaged) DLL. When that DLL was loaded into memory on a non-dev machine it would throw an exception and indicate that a dependency was not available. Copying msvcrt71.dll to the App Path resolved this issue.
Compiler exported unmanaged classes and structs by default
Under Visual Studio 2003, Unmanaged classes and structs are exported by the DLL and visible by default! In addition to being confusing, and a potential security issue, this also tremendously “polluted” the namespace, as all of these things would show up in the Object Browser of Visual Studio. This was resolved using the compiler switch /d1PrivateNativeTypes to sort this out, as indicated here: http://support.microsoft.com/default.aspx?scid=kb;en-us;822330
