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The entertainment world is teeming with applications for expressive, adaptive 

agents.  Many such applications feature some sort of “creatures” – anthropomor-
phic or non – that must maintain the illusion of life while interacting with one an-
other, as well as with human participants.  This chapter discusses approaches to 
implementing these creatures.  It begins by describing an agent-based architecture 
representative of many of those found in the entertainment world, and then shows 
how the integration of a new representation for prediction allows new forms of 
learning, adaptation and expressive behavior for agents that use that architecture.   

The Usual Suspects 

Here are some examples of agents in entertainment applications: 
• An anthropomorphic robot uses cameras and microphones to perceive real-

world visual and audio information.  It detects a person standing in front of it, 
and tries to mimic that person’s upper body motion as best it can.  It uses fa-
cial expressions to show its satisfaction, confusion, curiosity, and so on.   
Sometimes, when “feeling mischievous,” it instead performs other gestures it 
has remembered from previous interactions. 

• In an interactive installation, an autonomous virtual sheepdog exists on a field 
with other virtual creatures and objects.  Human participants act as the shep-
herd, shouting voice commands which the virtual dog must interpret to suc-
cessfully herd sheep. 

• A fearsome behemoth named Goatzilla is a virtual creature that inhabits the 
Scottish highlands.  He begins his life with no knowledge of how to scavenge 
for food.  In order to survive, he must learn – in real time, while maintaining 
the illusion of life – strategies for rustling up the local shepherd’s tasty sheep. 

• In a virtual sports simulator, an autonomous agent controls the right-wing 
forward player on a hockey team.  This agent perceives the state of the arena 
from its vantage point on the ice, and, given its knowledge of the game and 
the social dynamics of the team, including offensive strategies practiced with 
the other autonomous players, determines an appropriate course of action.   
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I Perceive, I Decide, I Do 

These four agents, while different in purpose, have quite a lot in common.  
Each is expressive.  Each should be robust to changes in its dynamic world.  And, 
practically, on a moment-to-moment basis, each must work in real-time to choose 
between a variety of possible actions.  To do so, each agent perceives its world 
(real and/or virtual), and bases its decisions on both its current perception of the 
context, as well as its internal state.  By internal state, we mean for example that 
the sheepdog might be more enthusiastic if very hungry, and the hockey player 
might adopt a defensive posture if recovering from an injury.  Once each agent 
decides what to do, it must work with the degrees of freedom availed to it to ex-
pressively carry out the desired action.   
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Fig. 1. High-level view of a layered cognitive architecture for an autonomous agent.  See 
[6] or [17] for more detail. 

The details of the last task – the agent’s act of actually modifying the world– 
are largely task-specific and vary greatly between applications.  An animated 
character, for example, must figure out how to move expressively and remain in 
character while performing a particular action ([27], [26], [11]).  A robot might re-
act similarly, although with servos in the real world ([4], [32]).  Agents are often 
constrained by the laws of either real or cartoon physics: the virtual hockey player, 
for example, can’t stop skating on a dime. 

What Motivates You? 

Just as, in stage drama, a method actor might ask “what is my motivation?” an 
agent can be aware of what motivates it to behave a particular way.  

One obvious way in which the simplest goals in an agent can been represented 
is in terms of drives.  An agent might have a number of drives, such as hunger, 
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pain avoidance, reducing the distance to the opponent’s goal, and so on.  Each 
drive could potentially be reduced to a simple scalar number we’ll call the Drive 
Output, the value of which can be obtained by some function of other aspects of 
the agent’s system.  In a virtual dog, for instance, hunger might simply be a func-
tion of the amount of food in the creature’s virtual stomach.  Or, it might also take 
into account things like whether or not the creature can perceive food, what time 
of day it is, and so on.  The output of each drive can then be arbitrarily scaled to 
be between 0 and 1.  At 0, the drive is considered fully satisfied [30].  

It’s then easy to preferentially weight one of the drives over another, by includ-
ing a Drive Multiplier – a scalar unique to each drive that is multiplied by the 
Drive Output.  These Multipliers can change over time, causing the creature to oc-
casionally favor one drive or another.  They could, for example, reflect a circadian 
(daily) rhythm that causes an agent to weight a “sleep” drive more in the evening. 
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Fig. 2. Three Drives, their Drive Multipliers, and the resulting Drive State. 
A greater challenge is representing more complex goals.  For instance, the de-

sire to explore new alternatives might constitute a derived “Curiosity Drive.”  If, 
for some reason, it seems like curiosity should be represented on a different, more 
abstract level than hunger, perhaps it’s because it’s harder to pinpoint the root 
physiological cause of human curiosity.  In entertainment applications, it can 
make practical sense to represent abstract goals as drives.  The hockey player, in 
the context of the social activity of playing hockey, might have a goal to prevent 
the opposing team from taking a shot on net, which is manifested as a Drive that is 
particularly intense when the goalie is exhausted. 

Perceive the World to find ways to satisfy drives 

So our agent now has a motivation: it wants to reduce its Drives.  In order to do 
so, it will need to perceive the current state of the world to find relevant informa-
tion.  If the drive state represents a sort of internal context for the agent, the per-
ceived world state is the corresponding external context. 

For many applications, it is useful to distinguish between sensing and percep-
tion.  The distinction is obvious in the physical world – the robot’s cameras and 
microphones sense, and the interpretation of the signals sensed by those devices 
constitutes perception.  The hockey player may need to base his decisions on in-
complete visual information, instead of having full knowledge of the status of all 
other players on the ice.  This facilitates surprise, and motivates the inclusion of a 
spatial working memory, such as the one described in ([17]). 
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Perception is a rich area of research.  Indeed, Rodney Brooks sparked a revolu-
tion of sorts in artificial intelligence by suggesting that intelligence could be 
achieved primarily through perception, rather than representation ([5]).  Although 
few AI practitioners today would agree that representation is un-necessary, there is 
plenty of innovation that demonstrates how intelligence can arise from thoughtful 
perceptual representations.  Isla, for instance, has designed perceptual representa-
tions that allow a creature to reason about object persistence, by combining a spa-
tial ‘working memory’ with an ability to predict how the location of unseen ob-
jects in the world will change with time.  ([16], [21])   

One useful way to classify perceptual input is by using a hierarchical tree of 
“Percepts.”  Every nugget of sensory information passes through the Percept Tree 
and activates specific Percepts.  The activations of the Percepts can be used as in-
put to the creature’s action selection mechanism. 
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Fig. 3. Sample of part of an agent’s Percept Tree. 

Deciding What to Do Can Be Reactive 

One way the agent can make decisions is by simply reacting to the context it 
perceives.  In other words, the creature perceives a particular context (both inter-
nal and external), weighs a variety of options based on their perceived values, and 
then makes an informed probabilistic decision.  In order to make this kind of deci-
sion, the creature needs a representation that will allow it to answer the question, 
“in a given context, if I perform a particular action, how good will that be for 
me?” 

Blumberg accomplishes this with a representation called the ActionTuple.  [17] 
It is a useful starting point for a discussion of action selection, as it encapsulates 
and formalizes components found in many such mechanisms in the entertainment 
realm (and beyond).  An ActionTuple consists of four components: 
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Fig. 4. Anatomy of Blumberg’s ActionTuple. 
 
The TriggerContext is the world state in which the ActionTuple is valid.  The 

Action is performed by the agent if this ActionTuple is activated, and its Parame-
ters describe the details of that action.  A typical parameter is the object on which 
the action is performed: “pick up the ball” or “sit facing the shepherd.”  The 
DoUntil context describes for how long the ActionTuple should remain active.  
And the Value represents, in relation to the Drives, how valuable it is to perform 
this action.  The Value can be either Intrinsic (and fixed) or Perceived (and poten-
tially flexible). (For more on mapping Drives to Value, see [23].) 

Blumberg uses a dog-training paradigm to demonstrate how the ActionTuple 
representation can support a virtual creature that learns to perform tricks to receive 
rewards [3].  Suppose we want to construct a virtual dog that will sit when it hears 
the word “sit.” When the dog does so, we will reward it with a food treat that it 
should promptly eat in order to satisfy its hunger drive.  We can produce this be-
havior using two ActionTuples: one that says “when I hear the word ‘sit,’ and I sit 
down for some time, it’s pretty good for me,”  and another that says “when I see 
food, and I eat it, it’s really good for me.”  Both of these are depicted below. 
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Fig. 5. Two ActionTuples which, taken together, suggest that sitting when you 
hear the word “sit” has a moderately high perceived value (top), and eating food 
when you see it has an even higher intrinsic value (bottom). 

On a moment-to-moment basis, the dog must react to its perceptions by exclu-
sively selecting one of a number of possible ActionTuples, including these two.  
Most of the others will have low Values. So if the dog hears the word “sit,” then 
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with high probability, it will select the first ActionTuple depicted above, and con-
sequently sit down. 

Adaptations 

For many entertainment applications, agents with completely pre-defined be-
havior rules are appropriate.  However, we’ve recently seen increasingly complex 
and interesting agents that are able to adapt to changes in their worlds.  There are 
plenty of reasons this is exciting.  A virtual character can be personalizable, so 
that it gets to know you as you get to know it.  An agent that’s meant to act as a 
companion or friend can thus learn how to be helpful.  A combatant, on the other 
hand, can innovate new a personalized counter-attack.   

Blumberg was inspired by an approach used to train real animals to integrate a 
form of adaptation into the ActionTuple representation.  The technique requires 
two degrees of freedom: first, the Value of some ActionTuples must be plastic, so 
that Tuples that previously were not considered valuable could come to be seen as 
useful (and vice versa).  Second, we must be able to replicate ActionTuples that 
have modified Trigger Contexts, so that the agent can learn the context in which 
an action is valuable. 

The agent begins its life with several “consummatory” ActionTuples that have 
fixed Intrinsic Values, such as “Eat food.”  It also begins with other “appetitive” 
ActionTuples with flexible Perceived Values.  The Intrinsic Value is back-
propagated from the consummatory ActionTuples when they are active, into the 
Perceived Value of previously-active appetitive ActionTuples, as shown in Fig. 6. 
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Fig. 6. Back-propagation of value.  Part of the “Eat food” ActionTuple’s total 
Value, 100, is back-propagated to the “Sit in any context” ActionTuple’s Per-
ceived Value. 

In this manner, an agent can start with a simple ActionTuple like the one above, 
that makes it sit down in any context.  In the absence of food, this dog-agent is un-
able to activate any high-valued consummatory ActionTuples, and so it is left to 
“explore” the low-valued ActionTuples like the one above.  At some point, the 
dog randomly sits down, and, lo and behold, food appears, making it possible to 
activate the “eat the food” ActionTuple.  Some of the value from the “eat the 
food” ActionTuple is back-propagated to the “In any context, sit down” Action-
Tuple, so that its “Perceived Value” increases (as is occurring in Fig. 6.).  Of 
course, its Intrinsic Value is (and will always be) 0, since the act of sitting down 
itself doesn’t assist the dog in any way.  But the back propagation, as depicted in 
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the figure, allows the act of sitting down to gain perceived value because it leads 
with some reliability to a reward. 

When an appetitive ActionTuple achieves a high Perceived value, it can refine 
the TriggerContext to construct ActionTuples that will achieve higher perceived 
values, and thus be more useful.  It does this by determining which Percepts were 
reliable indicators of successful trials.  In this dog training case, if the dog has 
heard an utterance that sounds like “sit” recently, then sitting is likely to lead to a 
reward.  Thus the presence of the “hearing the sit sound” stimulus is a reliable in-
dicator for the success of the trial, and by innovating a new ActionTuple that re-
flects this, the dog will be able to represent the fact that the sitting action is more 
valuable when performed in that particular context. 
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Fig. 7. The TriggerContext of the ActionTuple is modified to create a new, more 
specific (and soon-to-be higher-valued) ActionTuple – one that is only triggered 
when you hear an utterance that sounds like “sit.” 

The Importance of Expectation 

Using the back-propagation technique just described, behaviors that were pre-
viously perceived as neutral can come to acquire value when they are performed 
in particular contexts.  Although this produces the desired effect of causing the 
agent to favor reliably appetitive behaviors, it leaves the agent incapable of an-
swering “why do I expect this appetitive behavior will be valuable?”   

In other words, there’s no capacity for expectation.  When a living dog sits 
down after hearing the word sit, it gives you an intense stare laden with expecta-
tion: “Where’s my treat, buddy?”  If the treat comes, the dog is satisfied and his 
expectations are confirmed.  If it doesn’t, there’s an expectation violation and the 
dog is left wondering what went wrong.  Then, a few moments later, if you give 
the dog some food for no apparent reason, he is surprised and possibly wonders if 
there’s something he could do in future to produce the same result.   

An agent’s ability to expect affords rich opportunities for learning.  Imagine we 
had a system that was capable of predicting the occurrence of salient events in the 
world.  It would be able to expect how the world is going to change, and modify 
its behavior accordingly.  It would even be able to predict how its own actions will 
change the world before it performs them.  And, since the world will inevitably 
prove the agent’s expectations to be wrong on occasion, the agent would be able 



8      Error! No text of specified style in document. 

to use unexpected events – both surprises and expectation violations – to motivate 
learning. 

Not only can the capacity for expectation motivate an agent to learn, but it also 
provides rich opportunities for producing the illusion of life.  An agent can emote 
its eager anticipation of something it expects will make its world a better place, 
and, if necessary, even take steps to facilitate the event’s occurrence.  Conversely, 
if it expects that something about to happen will make the world worse, it can 
dread the event, try to escape, and emote appropriately.  When things don’t go as 
predicted, the resulting expectation violations might cause frustration or relief.  
And surprises, depending on their effect on drive state, might be perceived as 
pleasant or unpleasant.    

But how to predict things?  

In order to form expectations, an agent needs some understanding of causality.  
Or, more accurately, it needs some representation of apparent causality.  An im-
portant and often implicit component of every expectation is a sense of timing.  It 
will be helpful to think of our agent as being able to represent events, both per-
ceived and predicted, on some sort of TimeLine: 

perceived event: pushed
“boost” button on heater

now the futurethe past predicted event:
room becomes warmer

TimeLine

perceived event:
started writing

perceived event:
hands too cold

 

Fig. 8. TimeLine for a non-virtual agent (me). 

So here we have a timeline that shows some of the salient events of my past 
few minutes.  Above the line are Perceived Events, which are the things I actually 
observed to occur.  Importantly, we assume that the perceptual input has been fil-
tered so that only the most salient events are placed on the TimeLine. 

Below the TimeLine are Predicted Events, which are the things I predicted to 
occur.  I pushed the ‘boost’ button on the heater about three minutes ago, expect-
ing that after an interval of about ten minutes, the room would get warmer.  So 
now, three minutes later, I expect that in five minutes or so, I’ll no longer be shiv-
ering as I type this.  This is an example of apparent temporal causality: I have no 
idea how the system that heats this room works, but I’m pretty sure that since I 
pushed the ‘boost’ button on the thermostat that controls the heater, I’m going to 
feel warmer soon. 

This is the simplest and perhaps most typical case of an expectation: some start-
ing conditions are perceived that cause an expectation of an event that is predicted 
to occur at some time in the future.  It’s simple to build a representation for rela-
tionships like this.  We’ll call the starting conditions our Predictor Context – the 
context of the world that allows us to make the prediction.  The event we expect to 
occur is the Predicted Event.  The interval between the Predicted Event and the 
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time the prediction is made (when the Predictor Context became active) is the 
Predictor Interval.  Rather than having a specific time at which the future event is 
likely to occur, like in the above example it is best to represent it as a window, as 
Fig. 9 illustrates.   

Predictor Context: Push Boost button
Predicted Interval: About 5 Minutes
Predicted Event: Room gets warmer

satisfies Predictor Context

generates Prediction event

Predictor

perceived event:
pushed “boost” on heater

now the futurethe past
predicted event:

room becomes warmer
TimeLine

perceived event:
started writing

perceived event:
hands cold

Fig. 9. Five minutes ago, this Predictor started a Trial and caused the expectation 
of a future event (the temperature in the room will increase). 

 
So this Predictor represents our understanding of the relationship between in-

teracting with the thermostat, and the future temperature of the room.  Imagine a 
Predictor as a sort of sentinel that waits around, watching the salient Perception 
events on the TimeLine, until its Predictor Context becomes active.  When it does, 
it interacts with the TimeLine to “start a Trial” by forming an expectation. 

The Predictor then monitors these newly-active Trial that each represent an in-
stance of an expectation.  The name Trial comes from the fact that every expecta-
tion the creature makes can possibly succeed or fail.  If a Perception event equiva-
lent to the Predicted Event occurs on the TimeLine during the window outlined by 
the Predicted Interval, the Trial is marked a success.  Otherwise, the Trial is 
marked a failure.  (There is also the possibility that a lack of success can be ex-
plained by some other mechanism.  See [1], [7].)  

Predictors come from surprises 

Where do these Predictors come from?  In some entertainment applications, it 
would be sufficient to pre-program an agent with a set of Predictors that describe 
how its world is going to work.   

However, as hinted at above, surprises can motivate an agent to form new Pre-
dictors.  A surprise is any salient Perceptual Event that can’t be explained by a 
Predictor.  Understanding why surprising events occur may help the agent predict 
similar salient events in future.  So, when a surprising Perceptual Event occurs, the 
creature creates a new Predictor to “explain away” the event [29].  The Predictor 
thus formed is a sort of “hypothesis” that the agent will be able to test in future.  
One way to form this hypothesis is to look back over the TimeLine for another sa-
lient event that occurred recently, and choose it as the Predictor Context, as shown 
in Fig. 10. 
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Fig. 10. One technique for selecting a Predictor Context.  This process creates a 
“hypothesis” Predictor to try to explain a surprising event. 

The ideal Predictor Context is one that is a salient and reliable indicator.  It 
must be salient, so that it is likely to be noticed by the agent in future.  And it must 
be a reliable indicator, meaning that when it is perceived, it follows that the Pre-
dicted Event is likely to occur; and, importantly, when it doesn’t, the Predicted 
Event is not likely to occur. 

Whatever technique we choose for creating Predictor hypotheses has to be 
probabilistic in nature.  The mechanism is going to make many mistakes, and 
many Predictors formed in this way will need to be culled. 

Predictors learn from expectation violations 

Sometimes, the first hypothesis doesn’t tell the whole story.  Perhaps I’ve 
learned that when I push the “boost” button on the thermostat, the house warms up 
in about ten minutes.  But one day, I push the button, and half an hour later, I’m 
still cold.  I experience an expectation violation, and my belief in the reliability of 
the Predictor decreases.  Maybe my hypothesis – that pushing the “boost” button 
on the thermostat will warm the house – isn’t always true!   

So I start recording (remembering) the more salient components of the world’s 
context that I perceive at the start of the “trials.”  Some days, my attempt to warm 
the room is successful, and other days, it’s not.  After a while, I come to realize 
that there is a reliable indicator of whether or not this technique will heat the 
room: the switch beside the thermostat needs to be in the ‘up’ position.  And so I 
refine my hypothesis to say that if the switch beside the thermostat is flipped ‘up,’ 
and I push the boost button, the room will be warm in about five minutes. 
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Predictor Context: Push Boost button when heater on
Predicted Interval: About 5 Minutes
Predicted Event: Room gets warmer

satisfies Predictor Context

generates Prediction event

Predictor

perceived event:
pushed “boost” on heater

now the futurethe past
predicted event:

room becomes warmer
TimeLine

perceived event:
started writing

perceived event:
hands cold

Fig. 11. Predictor with an updated Predictor Context.   
And this, unfortunately, is a true story.  (I thought it was a light switch.)  What 

it serves to illustrate, apart from my occasional acute lack of adaptive ability, is 
that we can refine Predictors to be more useful by looking for other salient and re-
liable indicators that should be included in the Predictor Context.   

The Cognitive Economy 

Creatures built in “wetware” (like ourselves) are limited by the number of neu-
rons that can fit in our skull cavity.  Virtual creatures are similarly limited by re-
sources like memory and processing power.  The result is a sort of cognitive econ-
omy, where for every source – the Predictor production mechanism, for example – 
there must also be a sink.  It is not obvious when to “cull” Predictors, because 
sometimes negative knowledge can be extremely useful, as Minsky describes in 
Society of Mind [24].  Nevertheless, a mechanism must exist for culling Predictors 
that are consistently unreliable.  This may result from a change in the world, or by 
a mistaken initial hypothesis.  

Mechanisms already exist in the architecture for allowing the agent to be judi-
cious when creating structures like Predictors.  For instance, only salient percep-
tual information is processed on the TimeLine.  (The salience heuristics, facili-
tated by the hierarchical structure of the Percept Tree, account for extreme sensory 
input, sudden and pronounced changes in sensory input, and sensory input previ-
ously associated with high-valued actions.)  Predictor refinement is also controlled 
by focusing on Predictors with unusually dynamic reliabilities.  Interestingly, there 
is evidence that unreliable reinforcement leads to exploration in real animals as 
well [14].  

To summarize, the creature wants to understand how its world works 

The thermostat example serves to illustrate the principle that drives predictive 
learning: that an agent should seek to understand enough about the world to pre-
dict things that it would find useful.  The mechanism described here is guided by 
salient events to form hypotheses that are represented as of Predictors, which are 
then verified and refined.   
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This particular model of prediction, and particularly the inclusion of windowed 
timing information within the model, was inspired by a recently-proposed etho-
logical model for classical and operant conditioning in real animals ([14], [7]). 

But what happened to Action? 

But you may have noticed that in our discussion of prediction, we didn’t talk at 
all about how the Predictor representation affects how the agent makes action-
selection decisions.  The Predictors help predict events that are going to occur in 
the future, but how does that relate to what actions the agent chooses to take?  

There’s an intriguing isomorphism between the ActionTuple and the Predictor.  
When we talked about action selection and the ActionTuple representation, it was 
shown to be useful to break down our representation for action into the Trigger-
Context, which contains the external conditions that caused an action to be rele-
vant; the Action and its Parameters that describe the self-action required by the 
ActionTuple; the DoUntil, which describes the length of time the action would 
take; and finally the Value, both Intrinsic and Perceived, of performing that action 
in the given context.  The Predictor is similarly broken down into a Predictor 
Context, which contains the conditions that cause the Predictor to become active; 
the Predictor Interval, which contains the expected length of time between the 
predictor context and an upcoming event; and the Predicted Event, which is really 
the “value” of having the Predictor – its ability to predict a future event!   

100
intrinsic

0
perceived

TriggerContext Action and
Parameters

doUntilContext

See Food Eat Food Until Gone

value

Predicted Interval:
About 5 Minutes

Satisfaction of Predictor Context

Generation of Predicted
Event

Predictor

perceived event

now the futurethe past
predicted event

TimeLine

ActionTuple

“Value”“Timing”“Context”

1 2 3

 

Fig. 12. Isomorphism between ActionTuple and Predictor representations: both encapsulate 
Context, Timing and a sense of “Value.” 

In other words, both contain (1) some sort of triggering mechanism based on 
context, (2) a timing mechanism, and (3) some sense of future value.  By now it is 
obvious that there must be some way to take advantage of this relationship to in-
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fluence action selection, and indeed there is.  The final clue for one useful action-
selection scheme comes from the fact that the Predictor Context occasionally, but 
not always, include an element of self-action.  What if the action itself, and its pa-
rameters (like the object on which you’re performing the action) became part of 
the context? 

If we replace the Value component of all ActionTuples with a Predicted Event, 
then the ActionTuple itself becomes a Predictor.  The Predictor Context is now 
composed of the TriggerContext, the Action and its Parameters!  Both literally 
and figuratively speaking, the “Value” of this “Predictive ActionTuple” is its abil-
ity to predict the Predicted Event!   

Learning with Predictive ActionTuples 

To show that this system is sufficient to reproduce a back-propagation learning 
technique, let’s consider how the dog training example works with Predictive Ac-
tionTuples.  The dog still has one consummatory Predictive ActionTuple, aug-
mented as described above, and shown below in Fig. 13. 

TriggerContext Action Parameters doUntilContext Predicted Events

Food Shape Percept
Activation

Eating Action Food Shape Percept
Deactivation

100
intrinsic

0
perceived

value

eating some food until it's gonein English: satisfies hunger drive

The Whole Predictor Context  

Fig. 13. A Predictive ActionTuple.  This is the dog’s consummatory Predictive ActionTu-
ple.  Note that we start being more explicit here about the fact that all the components actu-
ally refer to Percepts.  The “Eating Action” even maps on to an EatActionPercept.  The 
Predicted Events slot will be discussed in a moment. 

At some point, the agent unexpectedly perceives food – something that lets the 
above Predictive ActionTuple be activated.  But why did food appear?  Perhaps 
something happened a moment ago that, in future, could serve as an indicator that 
food is again on the way. 

the futurethe past
TimeLine

Perceived event:
I sat down

Perceived event,
not salient.

unexplained event
(the appearance of food)

now

Fig. 14. Timeline that shows the agent sat down a few moments prior to the unex-
plained appearance of food. 

According to the TimeLine shown in Fig. 14, the most salient thing that hap-
pened recently was self-action – the agent just sat down.  So perhaps sitting in the 
future will reliably be followed by the appearance of food.  This can be repre-
sented as a Predictive ActionTuple. 

It is important to note that the perception of food is not inherently useful.  
However, the agent has another ActionTuple – the “eat food when it’s present” 
ActionTuple depicted above – that is intrinsically valuable when the agent is hun-
gry.  Thus, in the new system, our new Predictive ActionTuple obtains value not 
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because it has “Perceived Value” back-propagated to it, but rather because of its 
ability to predict the appearance of the stimulus that would allow for the activation 
of an intrinsically-valuable Predictive ActionTuple.  In other words, it allows us to 
“complete the context” necessary to activate the intrinsically valuable Predictive 
ActionTuple.  (A nice side effect of this is that if food is already available, the 
perceived value of sitting is reduced, because, although that may cause food to ap-
pear, we already have the food necessary to complete the context of the “eat food” 
Predictive ActionTuple.) 

TriggerContext Action ObjectContext doUntilContext Predicted Events

in English: which itself isn't consummatory

TriggerContext Action ObjectContext doUntilContext Predicted Events

eating some food until it's gone which satisfies hunger drive

but it would facilitate

context that needs to be satisfied

thus the perceived value of sitting is 100 * 0.33 = 33

predicts food in 5ssitting for an appropriate interval

Sitting Action Duration of
Sitting Action

Food Appearance in
5sec (33% prob.)

Food Shape Percept
ActivationEating Action Food Shape Percept

Deactivation

0
intrinsic

33
perceived

value

100
intrinsic

0
perceived

value

Fig. 15. The two Predictive ActionTuples working together to create perceived 
value.  The Predictive power of the mechanism described above has been har-
nessed for action-selection purposes.  

Just like in the thermostat example, this new causality relationship (sitting leads 
to food) isn’t as well-defined as possible.  The agent will soon find that the prob-
ability of food appearing after sitting down isn’t particularly high.  However, there 
will be some reliable thing about the context at the start of each Trial that predicts, 
with great reliability, the Trial’s success or failure.  (More detail about techniques 
for tracking salient stimuli during Trials is found in [7].)  If there is an utterance 
that sounds like “sit,” and the agent sits down, then in a few seconds, food will 
appear with a certain probability.  So the context of the Predictor is refined to re-
flect this realization. 
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TriggerContext Action ObjectContext doUntilContext Predicted Events

in English: which itself isn't consummatory

TriggerContext Action ObjectContext doUntilContext Predicted Events

eating some food until it's gone which satisfies hunger drive

but it would facilitate

context that needs to be satisfied

thus the perceived value of sitting when I hear the utterance ‘sit’ is 100 * 0.80 = 80

it predicts food in 5sand I sit for an appropriate interval

Sitting Action Duration of
Sitting Action

Food Appearance in
5sec (80% prob.)

Food Shape Percept
ActivationEating Action Food Shape Percept

Deactivation

0
intrinsic

80
perceived

value

100
intrinsic

0
perceived

value

when I hear the word ‘sit’

‘Sit’ Utterance
Percept Activation

Fig. 16. The Predictive ActionTuple now only makes predictions (starts Trials) 
when the agent hears the word sit and sits down.  Thus, both external context and 
self-action are required to trigger a prediction. 

The “appetitive” version of a Predictive ActionTuple is valuable because it pre-
dicts some future event that will facilitate the onset of an intrinsically valuable (or 
“consummatory”) Predictive ActionTuple!   

Now, the agent knows exactly why it should sit when it hears “sit” – because it 
expects that food is going to show up if it does!  So when it hears “sit” and does 
sit down, it can drop a Predicted Event on the TimeLine and anticipate the upcom-
ing food.  If it does come, the agent is happy – but not surprised.  If food doesn’t 
come, there’s an expectation violation, and the agent is able to wonder why. 

The Goatzilla Domain and new Forms of Behavior 

The Predictive ActionTuple mechanism was implemented and tested for a vir-
tual creature reminiscent of many found in entertainment applications.  Allow me 
to introduce Goatzilla, a behemoth of an autonomous virtual creature that inhabits 
the Scottish highlands. 
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Fig. 17. Goatzillas in the mist. 

Goatzilla’s most important drives are hunger and the dominance of other 
beasts, and his food source is the shed in which the local shepherd keeps his 
sheep.  If Goatzilla kicks the shed, the frightened sheep scatter, and he can embark 
on a feeding frenzy.  Among his other drives is curiosity, which rises slowly over 
time, and can be reduced by interacting with unusual objects, performing less-
familiar actions, and experimenting with Predictor relationships that have a high 
degree of entropy (the ones that would sometimes, but not always, result in suc-
cess).   

The fundamental action selection decision an agent like Goatzilla has to make 
at every moment is whether to explore, exploit or react. In the mechanism shown 
here, the agent first decides whether it will explore or exploit.  Goatzilla does so 
by performing “drive selection,” wherein one of the high-level Drives is probabil-
istically chosen, using a distribution weighted by the Drive Multipliers ((1) in Fig. 
18).  If the mechanism chooses any drive other than curiosity, it selects an action 
that, in addition to being generally good for satisfying all drives, should be par-
ticularly effective at reducing the selected Drive.  Thus, the creature exploits its 
existing knowledge as best they could. 
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Fig. 18. Goatzilla’s Action Selection Mechanism. (Simplified; see [7] for more detail.) 

However, if the curiosity Drive is chosen, the agent chooses to explore rather 
than exploit ((2) in Fig. 18).  Instead of having exploration strategies scattered 
throughout the system, it was useful to assemble many of them into this central 
mechanism that could be called upon to choose an appropriate exploration strat-
egy.  For example, the Exploration mechanism sometimes would cause the crea-
ture to activate a Predictive ActionTuple that had been recently unreliable, so that 
the creature could initiate a new Trial for that ActionTuple’s Predictor, and thus 
further test the validity of that hypothesis.  Or, it could generate a new ActionTu-
ple by taking an existing successful ActionTuple (kicking the shed makes food 
appear) and modifying it to make another ActionTuple hypothesis (perhaps kick-
ing a rock makes food appear? ...or what about kicking any building made of 
wood?). 

If an unexpected stimulus is perceived, it may be possible to interrupt the crea-
ture’s current behavior to react ((3) in Fig. 18).  If food appears, for example, we 
might immediately interrupt our current behavior to approach and eat it.  Or, if 
Goatzilla is wise in the ways of the world and perceives a shed somewhere out in 
the mist, he may interrupt his behavior to approach and kick it, because he knows 
this will let him “complete the context” and thus activate the Predictor that says 
sheep (read: food) will appear momentarily.   
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Predicted events can also be used by the action selection mechanism to produce 
anticipatory and avoidance behavior – something that would be impossible with-
out an understanding of causality.  For instance, if we have learned (like one of 
Pavlov’s dogs) that the ringing of a bell is reliably followed by the presentation of 
food, then upon hearing the bell we might react by anticipating the appearance of 
the food [25].  On the other hand, if we’ve learned that the ringing bell is reliably 
followed by an electric shock, then hearing the bell ringing would drop a predic-
tion of the shock on the timeline.  As the expected time of that shock approaches, 
the agent might react by attempting to avoid the onset of the shock.  In Goatzilla’s 
implementation, special “approach,” “avoid” and “observe” ActionTuples allowed 
him to accomplish these reactive tasks. 

Here is an interesting example of a behavior facilitated by the representation for 
causality.  In the absence of a relevant stimulus, the creature can come up with a 
strategy for satisfying its drives.  If Goatzilla’s hunger drive is high and he is 
asked to Exploit, he can ascertain that, ideally, he would like to be eating.  But in 
order to activate the “Eat Sheep” ActionTuple, he is missing a prerequisite: the 
Sheep.  He can reason that, with high probability, kicking the shed will lead to the 
appearance of sheep in a short time.  Thus, he could approach and kick the shed, 
dropping onto the TimeLine the prediction that food will appear in a few seconds.  
After doing the kicking, he can stand back and anticipate the appearance of the 
sheep.  If they appear, he is not surprised; rather, he feasts, and reinforces his 
“Kicking the shed causes sheep to appear” Predictive ActionTuple hypothesis.  If 
they do not appear, there is an expectation violation, he is disappointed by the ab-
sence of an anticipated perception, and he reduces his confidence in the hypothe-
sis. 

As seen in this example, the TimeLine representation provides all the informa-
tion the action-selection mechanism needs to make these explore, exploit, react 
decisions.  To evaluate the Value of a Predictive ActionTuple, the agent can use 
the future portion of the TimeLine to generate a counterfactual – imagining what 
the world would be like if a particular action was performed by adding the Predic-
tive Events from that ActionTuple to the TimeLine.  (See [15] for an intriguing 
discussion of counterfactuals).  The TimeLine is also useful for determining if re-
cent Perceived or Predicted Events might offer the agent a chance to interrupt its 
current behavior and react.    

Socially-Oriented Prediction 

The inclusion of a virtual hockey player as an example of an autonomous agent 
at the start of this chapter was motivated not only by the author’s Canadian citi-
zenship, but also because it illustrates an agent acting in a social setting.  Agents 
with social understanding can also benefit from a mechanism that predicts how 
other agents (real and virtual) will react to a context. 

Elsewhere in this book are thorough examples of socially-oriented agents.  In 
Society of Mind, Minsky uses Scripts as a representation for a social activity (such 
as a birthday party, a conversation, or a play in a hockey game) in which more 
than one agent participates [24].  These scripts imply social protocols which de-
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scribe how each agent expects the others to behave in a particular situation, given 
each agent’s role in the social group.   

In the hockey game, for instance, the agents are members of the social group 
known as a hockey team.  At a particular moment, the six players on the ice may 
each be acting autonomously to implement a “behind-the-net” offensive strategy.  
Typically used by teams with strong puck control, the execution of this strategy 
requires meticulous teamwork – in other words, the ability to predict the reactions 
of your teammates to a dynamic and relatively uncertain situation. 

x

x

x

x

1

2

3

4

 

Fig. 19. The “Behind-The-Net” Offensive strategy, as described below. 

In the strategy, the puck-carrier’s goal ((1) in Fig. 19) is the maintain posses-
sion of the puck and bring it behind the opponent’s net.  As he does so, he relies 
on his two offensive teammates ((2) and (3)) to position themselves in front of the 
net to set up possible “one-time shots” – quick shot opportunities that are likely to 
fly past the opposing team’s goalie.   As the puck-carrier crosses behind the net, 
this triggers the defensemen (4), who are waiting at the blue line, to rush towards 
the net in anticipation of a pass that might create an exceptionally dangerous shot 
opportunity.  If necessary, at that moment the offensive teammates (e.g. (3), as 
shown) can move away from the net to prevent the opposing team from breaking 
away with the puck.  (I am indebted to [12] for this description.) 

This strategy could be represented as a branching script, in which each of the 
participants – the six teammates, and their six opponents – have defined roles.  So 
long as each agent can trust that each of the other agents on his team knows a 
similar “script,” he can predict how the others will react to the current context.  
The puck-carrier, for example, can predict that if he can cross behind the net, he 
can expect the defensemen to rush towards the net to produce a one-time shot op-
portunity.  And such an opportunity is likely to lead to a goal. 

All of this can be represented using Predictive ActionTuples and the TimeLine 
mechanism.  The additional requirement, which is beyond the scope of this chap-
ter (and the current implementation), is a set of Predictors that base their predic-
tions on the state of currently active social scripts. 
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It is worth noting that in current entertainment applications, such as sports 
simulators, a more computationally-efficient approach for such social behavior 
would involve a “meta-agent” that controls the entire hockey team, issuing orders 
to individual agents rather than considering the players as autonomous agents.  
However, such an approach would have to work hard to produce the illusion of 
life provided by limited agent-based perception.  Certainly it could achieve this ef-
fect by determining, at the meta-agent level, what each individual agent is able to 
perceive.  If the arena is viewed from 10 meters off the ground, such details are 
likely to go un-noticed.  But during dramatic close-ups and replays, the illusion of 
life would be greatly augmented by authentic touches like things like the look of 
surprise on a player’s face as an opponent he failed to notice steals the puck out 
from under him.  

Devils in the Details 

Although the technique has proved highly effective for creating an agent that 
can learn about causality while simultaneously behaving in a lifelike way, there 
are a couple of subtle nuances that should be mentioned. 

Evaluating the Perceived Value of a Predictive ActionTuple is a recursive proc-
ess.  This makes it possible to for an agent to generate predictions based on com-
plex causality chains, but it also introduces a potential computational bottleneck.  
Perhaps a superior model of attention would allow for a dynamic limit on the re-
cursion depth. 

We haven’t discussed how to organize ActionTuples, either of the Predictive or 
regular variety.  As an agent gets more complex and able to adapt to and interact 
with more contexts, this becomes increasingly important.  Depending on the ap-
plication, context-action pairs might be organized into groups based on some 
higher-level context.  Perhaps this would be in terms of higher-level goals (like 
winning a hockey game, versus discussing the match afterwards).  Current re-
search involves techniques for organizing actions in terms of social function 
(things I do with my family, things I do with my hockey team, and so on). 

Things That Worked 

Causality and Action Selection are integrated.  To take advantage of causal-
ity information, the contexts an agent uses to trigger its actions can be equivalent 
to the contexts used to trigger predictions.   

A desire to understand the world drives learning.  When an event occurs 
that the agent doesn’t predict, it registers surprise and invents an explanation for 
why the surprising event occurred.  When an explanation (in the form of a Predic-
tor) turns out to be erroneous, an expectation violation occurs and the creature can 
either refine the explanation or invent a new one.  In the absence of unusual stim-
uli, the agent’s curiosity drive motivates it to explore.  It bears repeating that all 
three of these fundamental motivations for learning emerge from a desire to un-
derstand the world.  Certainly, the agents described here are highly motivated to 
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satisfy their drives.  But, instead of perpetually attempting to maximize rate of re-
turn, these agents instead seek to understand enough about the world to satisfy 
their drives effectively and predict the onset of salient events.  They are then mo-
tivated by curiosity to discover new things, some of which may lead to new tech-
niques for maximizing rate of return.  One observer called this the “curious 
slacker” approach.  The results suggest it creates creatures that are better able to 
sustain the illusion of life, and avoid some local maxima in the process. 

There is a Cognitive Economy.  For every source there must be a sink.  For 
every mechanism that deposits topology, there must be a mechanism that performs 
withdrawals.  The architect of a cognitive architecture must consider the perform-
ance of the system on various time scales – eight seconds, eight minutes, eight 
hours, eight days – as well as in the theoretical limit.  What will happen, for ex-
ample, to knowledge that is rendered useless by a change in the environment? 

Nothing is deterministic.  It is almost always the case that when some decision 
in an agent is deterministic and involves selecting the “best option,” the agent is 
afforded an opportunity to get stuck in a mindless loop.  It invariably will.  Some 
mechanisms, such as the hypothesis-generating mechanism for Predictors, obvi-
ously require a random element.  Others, like the one underlying the exploit opera-
tion that is meant to select the “best” option, should also employ some degree of 
randomness.  Choosing an optimal and intuitive distribution for a selection process 
is another story.  The theory of probabilities, noted Laplace, “is nothing more than 
good sense confirmed by calculation.” 

The agent’s representation of the world is (slightly) less simplified.  Many 
credit assignment and machine learning algorithms make substantial assumptions 
about how the world is represented.  If we are overzealous in our attempts to sim-
plify our mental representations of the world, we risk introducing what McCallum 
calls aliasing – the inability for adaptive representations in the system to learn the 
right things, because the perceptual representations can’t distinguish between the 
things they need to learn about [23]. 

Conclusion: What we get from prediction 

A representation for prediction and expectation can be added to a system de-
signed to support creatures that maintain the illusion of life.  The mechanisms are 
capable of adaptation, so that a creature built using the system can learn about 
causality “on the job” and even react to changes in their world.  In addition to the 
new motivations for learning that are facilitated by surprises and expectation vio-
lations, this system also extends an agent’s capacity to emote, by providing a plau-
sible source for emotional effects like eager anticipation or dread, satisfaction or 
relief, and many others.  I would not be surprised to see prediction become in-
creasing pervasive in agents built for entertainment applications. 
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